Айниятро исбот намоед: \(\frac{\operatorname{tg}{2\alpha}+\operatorname{ctg}{3\beta}}{\operatorname{ctg}{2\alpha}+\operatorname{tg}{3\beta}} = \frac{\operatorname{tg}{2\alpha}}{\operatorname{tg}{3\beta}}\)
- Информация о материале
- Автор: Раҳимҷон Ҳакимов
- Категория: Тригонометрия
- Просмотров: 637
Айниятро исбот намоед:
\(\frac{\operatorname{tg}{2\alpha}+\operatorname{ctg}{3\beta}}{\operatorname{ctg}{2\alpha}+\operatorname{tg}{3\beta}} = \frac{\operatorname{tg}{2\alpha}}{\operatorname{tg}{3\beta}}\)
\(\frac{\operatorname{tg}{2\alpha}+\operatorname{ctg}{3\beta}}{\operatorname{ctg}{2\alpha}+\operatorname{tg}{3\beta}} = \frac{\frac{\sin{2\alpha}}{\cos{2\alpha}}+\frac{\cos{3\beta}}{\sin{3\beta}}}{\frac{\cos{2\alpha}}{\sin{2\alpha}}+\frac{\sin{3\beta}}{\cos{3\beta}}} =\)
\(=(\frac{\sin{2\alpha}}{\cos{2\alpha}}+\frac{\cos{3\beta}}{\sin{3\beta}}):(\frac{\cos{2\alpha}}{\sin{2\alpha}}+\frac{\sin{3\beta}}{\cos{3\beta}}) =\)
\(=\frac{\sin{2\alpha}\sin{3\beta}+\cos{2\alpha}\cos{3\beta}}{\cos{2\alpha}\sin{3\beta}} : \frac{\sin{2\alpha}\sin{3\beta}+\cos{2\alpha}\cos{3\beta}}{\sin{2\alpha}\cos{3\beta}} =\)
\(=\frac{\sin{2\alpha}\cos{3\beta}}{\cos{2\alpha}\sin{3\beta}} = \frac{\sin{2\alpha}}{\cos{2\alpha}}\cdot\frac{\cos{3\beta}}{\sin{3\beta}} =\)
\(=\operatorname{tg}{2\alpha} : \frac{\sin{3\beta}}{\cos{3\beta}} = \operatorname{tg}{2\alpha} : \operatorname{tg}{3\beta} = \frac{\operatorname{tg}{2\alpha}}{\operatorname{tg}{3\beta}}\)
Яъне:
\(\frac{\operatorname{tg}{2\alpha}+\operatorname{ctg}{3\beta}}{\operatorname{ctg}{2\alpha}+\operatorname{tg}{3\beta}} = \frac{\operatorname{tg}{2\alpha}}{\operatorname{tg}{3\beta}}.\)
Айният исбот шуд.
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)